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Abstract: In this paper a method is developed by which one may
obtain solutions to the non-homogeneous equation of
generalized axially symmetric potential theory
(GASPT). Representation formulae are obtained and
the method is shown to be extendable under certain
symretry conditions to the Polsson equation in three
variables,



I. Introduction
Professor A. Weinstein[l 12131 4] has referred

to the study of solutions of the partial differential equations

() = > 3‘ w
\_ {¢_l" % + ﬂg *7%% =O, K7/O, (l)

as generalized axially symmetric potential theory (GASPT). This
equation is initially arrived at by considering those solutions of the
n-dimensional laplace equation which depend solely on
X=x%,, Y= (Xo+ ===+ x:\‘/; (in this case K =n - 2).
In previous works this author [ 510 6 1 710 8) *+
has studied properties of the GASPT equation by function theoretic
ﬁethods based on the use of an integral operator O.K tf] s which

naps analytic functions f(ﬁ“) onto solutions of (1).
-\

R=1
o = G, §= qu {@(2-1) 93, (2)
+ K
= ..4;_—— A -t °
L 3" (ﬁ\i\ r(%\l ) 0‘=x+.z.(’$+g )’ \i‘z\<6,
Zexeiy, 2°= X°+1Y,
1s en initial point of definition for $(¥) , € 70 is sufficiently

% For similer investigations of the integral operator method as applied

to GASPT, see Henrici[9) and Mackie [101] |
+ The function-theoretic approach which we use here is primarilly due

to S. Bergman, see for instance [11] , [ 12) and [13]) .
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small, and integration path is the upper semi-circular arc connecting

+ 1 tO - l [
In this paper we shall investigate the properties of ~—  °  w==see,

solutions to the non-homogeneous GASFT equation, namely
) - (x )
L Tl = pexy (3)

by means of integral operator methods. One notes first, that when

K0 _ equation (3) becomes
A¢= r(xo")} (u)

end that by replacing X%, Y by X= E+¥  y« -7 ,

~ ! A

we may rewrite (4) as

4 3"42 = P(2,%),

2t21

vhich integrates directly into

:

b = SSPAeAi . 3(1)-0-@.

This method suggests that we consider the integral

operator A‘['f] : -
= ) (1-57) 4y
1)(1) = Antg:\ A X {(0"6‘ ) K3 )

r

(5)
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where -g (w,w"‘) 18 an analytic function of the two complex veriebles
W‘,U""; (g is the same as before, 0'*-: X—%X('g*.'t'.) ’

|2-2°1<€ | ana €70 1s sufficiently small etc. . It is clear,

that 1f V%] =) and X,y are real, then C¥=& . Also, if
24 = *
N 20 ,0r 3w 0 , then § is either a function of T
or ¢ respectively; in these cases AK—§ QK , ana ¢Li) is a
solution of (1).
In order to obteain a solution of (3) we apply the operator
(x
L. to (5) and interchange the orders of integration and differentia-

tion,

LT ) = 8« g LT e, em) (f-f")mJ}&_

+1

= %x j ‘bt“’ ('3-1-‘)‘ + 2 }\'Y' ($+[‘S+X"]z>

4 >¢t 200
+1
[P ]
24 (s-87) ¢ 4K LL - ik 2f -2 41
yo#? y ¢ 20¥ 3

(6)



S T

By rearranging terms, and integrating by perts one obtains

- +I
L(K\[dﬂ - _g(“._K X f‘". ('3-'5") * J'S + :‘_ﬂ‘[f (3"8")K]—.

" R
-1 K -1 )K.“A's
ik (4 g (g1 Ty e (f g-2T) O
2y 5‘ ds ¢ 31 4 _.S\ ™o A
+! = ”
A | § (g-f--)“] +A1<S o (g-¢) Y
2 ¥ 2 iy ™
Y -1 Y +
-\ - K-ld
X “S £, [z. + L ($427) ] (s-1") _31
+\
-l L K=\
= Ay S {qﬁu- K_i +Ji(""f-.); -5;_(3—3-') ](‘-! ) ‘i;_

K=\
= 4y S toue (s-17) ‘J_S‘i=f(*d) NG
+1\
Ve realize from this, that if (6, 6*)  satisties the
integral equation (7), then ¢li) = An‘.$ 3 is a solution

of equation (3).



-5 -
II. Properties of the Operator Av\ [(;-I .

We first prove

Theorem 1: In a sufficiently small neighborhood, N(2°) , of an

initial point of definition, &° , the representation

by = AcTE) Za | feae®) (-6 748,
+I

tw) = plx,y)
yields the most general, analytic solution to L [ ‘b] N g Y

providing that -& 1is contained in the class of analytic functions of

two variables, ¥ , which satisfy the integral equatiou,

L3R T OUPC RP T
Plxy) = 4& (s-t7) 3

Proof: It is clear that if §&£ ¥ , then ()= A, L§)

18 a solution of (3) if 2€ N (2°) ,and N (2°) 1is
sufficlently smell. Furthermore, if F(s,¢#) ¢ ¥ , then
Flo,e¥) = firoe®) + §®) +hic?) , vhere G  and h

are arbitrary analytic functions of @, c¥ respectively. One then

has, that

A“[VU‘.T")\ = An['?“.“*) + a(t\ + Mq.-n):\
= Als) + G Eg) +a:th] ,



ded -6 -
voere G¥Ln1 = utd). 12 GeInl= utd),

The difference An[ F] Antgl Oktg') + q\g E"\]
represents the general analytic (in X,Y ) solution of (1) is some
netgborhood N (2°) or 2° , gince etther Oelgd or G [h)
represent general solutions of the GASPT equation. (See Gilbert [ 5 )
[6)[ 7) ). It follows then that A, CF] represents the most
general solution to (3) in a sufficiently small neighborhood NH") .
The next problem we consider is the representation of
solutions of LM [d] = PixY) by A‘Y_F) . For instance, if
F(C“‘G*) bas the series expansion

o A
W
Fle,e®) = 0. ), Guw © € 8)
N=0 m=p
vhat is the series representaticn in terms of X,Y  etc. for
«z)-AK[F) ? We begin by neca.lling[lh]

€M)= GlenTee gtr“(m’)“"c'x, (5)
} r_'(xm) N T
N 1$)=1

wheref"‘ir ,Yz,z‘ ,anan (E) 1s a Gegenbauer

polynomial | [14] . It follows then, that

b - Z"“" "C"’“(:) O.Lf] where o0 Zm

n=y (A’f" ” nsd / (10)
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for [2l< €  suffic’ently small.
It is interesting to note that the class of functions
fve C* , where o= X ‘?(!*1’") are not even
locally ( ge N(Y ) solutions of the GASPT equation (61,
Consequently, the homogeneous polynomials, An., (2)  of degree
n in X,y , vhich are defined as coefficients of I  in the

“
trinomial expansion of T

+n ,
" . Z A,\‘v(i) 1 ) (11)
Vs-n

are not in general solutions of (1) either.* It can be shown, never-
theless, that ¢(l) = GK [{M‘)] does generate solutions
to (1), and that the set of functions -,c,\ (¢) = o™ generates
a complete system of polynomials (4] . To show that
¢s QK[{’un-X , fe c* is a solution of (1) we need

only integrate by parts as before
-

LT é7 = ««f L™ frer] Ce-s7)" 4

T
+ )
% When v=p , the polynomial A., () is a solution of the
n
GASPT equation for K=| , since A,.,,(*) =2 Enlf).

Ve shell see shortly, that the Aw.(?) = constant v" P, /(T)

v
where the P. [ f) are associated Legendre functions.



-] il

" K ! -
= —dv Xg (e-¢7) <t +ia K jp 0+ ¢ (r-S")k dy
‘v r T T
- -
- _1—& f" /f'f ;)K”.-J_r + ag 4 .;(0‘) /T"f ) +
['{ 4
+)

(12)

It may be shown in the same way, that ¢=GKE{/‘T*)] is
also a solution of the GASPT equation.
There is a relation, however, between the polynomials
A"‘»/ ()  and the associated legendre functions. This may be seen

from Heine's integral relation L] ,



(13)

AT, () .
Likewise, the coefficients /fln,v of the expansion of T

also may be related to the Legendre functions by

M

| _ , n
A " . r" /D‘n)n/f) = J—j (x"_g/f*f-)> fm‘_’i

("'I-m)., ik T{LY] :f

- I N ,m x
awd f T g J?j- = An,-m (®).
It1=1 (1)
We note in passing, that expressions (13), (14) may be

used to give a representation for the Gegenbauer polynomials in terms of
the Legendre functions, when K)O,
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-l

K/,

1 [n/I) = 4['('“") . [v’“ (y.y-,)“ﬁ,

(45)" [(X) ! g
12]=1
hence -
N m ™ "
CK/,_l‘) _ 4 I"(K""“) Z A Pn ,f) f 'SM(-g-f")" i:.
n ‘41)‘ /‘Yé) ™mz-n (”l-m)-’ + T
It]=1

Bowever, it is kmown" that for KY o ,

-l

Y (1-37) 4 o

[ 475 $ . m ), et BCe )T )

*i B | kbl Ple+4)

I1¢]=1 ( b * ®
is the Beta-function. One then has

_ T "

) = T 4 " Plean) T @ PRLD (25)

" K p(g)" Luteml pfkeiem kebn)

M=-n * b

% See page 12 of Higher Transcendental Functions, Vol. I . .



-1 -

One may consider the integral
-
\

m - K-
A Lo r*m] =« S‘ e (3-37) 54%;_
131 = .
" *-m , V- v M - e -
) PR * R AL (f “1s-%

M=-m ln-w).' /WH'—“)-' +

4 em v “
p o Y 5 & P.(¥) P 1%) ‘
e eV} (mea) ! B(Kq-u tars K'H-M‘V)
-~ L(16)

ITI. Particuler Solutions Genersted by Ay [§]

K =
In order to generste particular solutions of L L] =p
vhere P  is analytic about the origin in the real variables X,y

we consider the integral equation

f gls,0%*) (5-1)

+1
Igl=1

vhere 3/0’,0*) = 4oy )%f;‘ . If j?/x,y) has the
Taylor expansion. Plxv)')= f Z‘o a. Xp)/v, IZ-' < P ’

4zo v2p

K-

)
d-—r— - /x'X)l
¥ "f

s

3
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then one may solve formally for the Taylor coefficients, 2MN , of
‘3(0’, T¥) as follows.

|

men) +n
.., = 2 f(0,0) '-'J‘ 2—’— %(0"0*)

(s-37)
h)

2x"y" x" Jy"
+1 Xey= 0
181=)
- AL B men
(@2 Y e el
+ M vz S )f"lmo—n)-‘/m)

XSYso

. (-g+$")“ (S—S-')K-"_lg_

x-!

-l
(‘:)(:‘)(_Y 3»‘*"0\\"\-,\5\4') J"(SPSJ) (T"—') ?"

I1S)=1

or

m M
A =pm< Z Z(.)"(:‘) ( :) %M#V' (men)e (mev)

MED e (17)



K+|+n _v)

Several special cases are suggested immediately, for

instence, where f  is a function of X or Yy alone. If

\P("(:Y) = bix) , we may then choose %(T, %)  to have
the form Gltaa¥) = G (wx) ; one then has
. R
(c,0%) = Y = X = 4 T
9 (s ) G (2x _gz:. ) @o& :—B-(w )

and

fime®y = P con

% Por
the Poisson equation ‘1 ¥Méh ‘given by

A particular solution to

=\ =+

v A
¢(e) = P g et (k-1 Ag m, sz ZH P(X)Pty) |

- +w)! IH)‘)‘BG&I:E" Ke 39
4POK + ’:-. Me=|

15\=) (18)
In the case _pP(x,y) = PY) , %(6‘,0"") may
be represented as % = G(oe-T¥) = G (4'7 Cte 1’"]) ,

and we consider then the integral equation,



-1 -
-\

S G(iv[vs"'l)(f-"'r'? = Py .

+1
18i=1
" »” v
Ir 6(;):2 %viv , and P(y): Z Py Y
Y= ¢ V=0
one may compute the Taylor coefficients 3 » formally as follows,
-! - s w ¢
, Ve - -}
(240 ) () s (s )" 4y
+! N=o r=90 3
1S)=)
e M n av-n nel
. A" " -x"
=ﬂ§‘*M“Z(v)S’ b3t s
Va0 =\
1R\= )
o . v
" hq] (")
=T A Z 9. (-y) Z (V) /5(1‘——-*_';"'-;-»/J “__“*'\-v) )
e o vz o *

from vhich we have "

4] = " (_)v -
8“ = (-\ Pv\ ’ u.)\,crt XM - Z (V) /B(Kﬂ-n_'v’ K+itn -v)
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providing Hnn ‘71 Q>0 for all n, and for K7 0.

/
One may proceed as before and obtain a particular solution,

d- ; S q‘w‘G,(ty[gq"]) (3-3) -d_‘f; .

+1

1=

IV. The Poisson Equation in Three Variables

It 1s interesting to note that the methods developed in
the previous sections may be extended to Poisson's equation in three

variables, that is we consider the equation

= Mu X ¥
AvELL R R epeem). @

We may generate solutions to this equation by means of an integral
representation similar to the Whittaker-Bergman operator
vhich maps functions of two complex variables into solutions of

Laplace's equation, AH(X)= o . (1] 12]( 13)

HE) = g1y =a | BLED) 1, =
L



- 16 -

te [-txi-in)p pxs v (x,+1x.);‘-‘-] ) ”.’.‘-Z"N(E,Ys (x,%,%)
z

° o“
X (X, X ,X;‘) , where i is & closed differentiable arc in
¥ - plane, ani €70 1is sufficiently small.

Following our previous method we introduce the integral representation
d,(F) .
wE) = §(F)= 1 | T4
3 TN A 1
b g

vhere F is an analytic function of the three complex variables

) (22)

't,‘t*,“ ; T 1s the same as above,

t‘ [(X,-AX,)I 4—’(3—()(.?-4)(., } “X-Z \\(6 ote,

It is clear, that for 13\e | ana XZ (x,, %, X3 )
a real point, thent¥=et | %E- , orj%:=° , then
F is a functionor t or t* respectively; in these cases QU")
becomes the Whittaker-Bergman operator, and U (X ) is & harmonic
function. If f(X) e C - , then we have by interchanging orders of

differentiation and integration

g (¢-37) 2F_ds.
A -S— 47

f(x) =AW =1 S AF dt = L
WA
19\ =1 3=
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Hence, as before we may obtain a particular solution of AU =f s
with the representation (22) if F is a solution of integral
equation (23). In order, to see how B(F)  transrorms analytic

functions of three variables into solutions of (20), we first consider

the integrals
*m
un'm')(x @(tﬂtﬁ’" A) ___L_. gt”t 5| a“f Snom ) enim
n+m 'ﬂ” i’ P [) w f
g | (Y R
i 14l (zvz-'\ nrv)! - (m+m)! I
A-v
_ C‘MP A em 'M| Z-' P II\ P lx)
= 4 n., M.

!

veN(m.n) (nv)! (M-M-v)!
(24)

vhere N(mn) 15 the set of indices {V' vién |>"V\&M}'

Consequently, if F is the analytic function

A nrMm
xwm A
Flt, t% 1) = 2 Z (I A (25)
M=o 4 L, "

é
defined in the region || <R, |t*| <R, [-¢ L13) <+ &y,

the corresponding function y (X) s vhich is regular in a neighborhood

of the origin is
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u® =) 7 G, o » (B). (26)

NmaD Az-pn-m
Since, the integral (24) vanishes vhenever [A1>mM4n v need Just
consider the functions F  defined by (25). We shall realize that
this class of functions does not in general generate solutions to
AW = P , vhen r is an arbitrary real analytic function of
Ki, Xy , X3
Under certain conditions the integral equation (23) may be solved; to

see when this 1s possible we consider the integral

2 F

L\ G- &
‘mS T e 6L e ‘

9=\

and G has a representation such as (25). The general term in the

series expansion for 6 integrates as follows

_ Mg (ne7) e
(z) aTA &

1
1£\=\
) /S) '(V'!‘M)\( S
n+m P "f € g .-y - d
= nlm — L \Y (- r) f
n V_Z-’n Z-M (M M\l atia
It)=1
N - M

s (Vs dO-v-m)T
= _A.)“!M!Trwm Z i(— P IS)P If) )\'[I-i-e ]
ron wn lowa) Tmta)! T+ S22 (- 2582)
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Ir f()(., X, x,) may be expe.ied in terms of the polynomiels

?Vv\ " )‘j , we may find & function 3  which satisfies (23), and
consequently generate all solutions of (20). This clearly is not the

case in general; however, under certein criteria of symmetry on

P (%, X, XS) such an expension will be possible.
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